Abstract

Cancer is a debilitating and deadly disease caused by the uncontrolled growth of aberrant cell populations. This disease cannot always be controlled with traditional therapies and medicines. Different medicines are being used for this purpose, however these medicines have their side effects and are harmful to healthy cells. A better way to cure cancer disease is by limiting the agglomeration of cancer cells, minimizing their growth and their population by destroying these harmful cells. This could be achieved by controlling the function of mitochondria and DNA in cancer cells with the use of biocompatible materials with tuneable physical properties. Accordingly, research is ongoing as to the use of nanomaterials and nanotechnology in medicine. Zinc oxide semiconductor nanoparticles have displayed good anticancer behaviour. They have unique properties such as biocompatibility, good stability, and are environmentally friendly. Owing to these characteristics, they are focused on biological applications such as drug delivery and cancer therapy. In the present research work, zinc oxide, titanium dioxide nanoparticles and titanium oxide-zinc oxide nanocomposites were successfully trailed for anti-cancer activity. Pure zinc oxide nanoparticles (ZnO NPs), titanium dioxide nanoparticles (TiO2 NPs) and their nanocomposites (TiO2+ZnO NPs) were prepared by the co-precipitation technique. The structural properties were investigated by X-ray diffraction, which confirmed the Wurtzite structure of pure ZnO NPs. The morphology of the NPs was checked by scanning electron microscopy. For incident light having a higher energy band gap of nanomaterials, the electrons are excited to the conduction band and these electrons generate reactive oxygen species (ROS). The efficacy of these nanomaterials was checked by exposing the NPs to the human liver cancer cell HepG2. The MTT assay describes anticancer activity via cell viability. The cell viability of composites was observed to be greater than pure ZnO NPs. Their results showed that the structure of ZnO NPs remains the same with composites of TiO2 NPs, but the band gap of the composite was intermediate for individual samples. It also showed that the anticancer activity of composites was also less than pure ZnO NPs which is due to the reduction of ROS generation. This is observed that nanocomposites of ZnO and TiO2 could be effective in the development of a treatment of human liver cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call