Abstract

The receptor-type protein-tyrosine phosphatase LAR (for leukocyte common antigen-related) has been implicated as a physiological regulator of the insulin receptor. To demonstrate a functional interaction between LAR and the insulin receptor, we incubated CHO cells overexpressing the human insulin receptor with an antibody to the extracellular domain of LAR and found a 47% decrease in insulin receptor autophosphorylation and kinase activity. A physical association between LAR and the insulin receptor was then shown by immunoprecipitation of LAR from cell lysates and immunoblotting with antibody to the insulin receptor, or vice versa. Up to 11.8% of the LAR protein in the lysates of CHO cells overexpressing both the insulin receptor and LAR co-immunoprecipitated with the insulin receptor. The LAR/insulin receptor association was related to the level of LAR or insulin receptor overexpression and was increased 6.5-fold by chemical cross-linking and 3.9-fold by treatment with insulin, suggesting that receptor activation influences the affinity of LAR for the insulin receptor. In insulin-stimulated rat liver, LAR was temporally enriched in endosomes with the insulin receptor, and incubation of endosomes with neutralizing LAR antibodies decreased insulin receptor dephosphorylation in situ by 28% (p = 0.01 versus control). These data provide more direct evidence of a role for LAR in the physiological regulation of insulin action at the receptor level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.