Abstract

Purpose: Positron Emission Tomography (PET) has the unique capability of measuring brain function but its clinical potential is affected by low resolution and lack of morphological detail. Here we propose and evaluate a wavelet synergistic approach that combines functional and structural information from a number of sources (CT, MRI and anatomical probabilistic atlases) for the accurate quantitative recovery of radioactivity concentration in PET images. When the method is combined with anatomical probabilistic atlases, the outcome is a functional volume corrected for partial volume effects. Methods: The proposed method is based on the multiresolution property of the wavelet transform. First, the target PET image and the corresponding anatomical image (CT/MRI/atlas-based segmented MRI) are decomposed into several resolution elements. Secondly, high-resolution components of the PET image are replaced, in part, with those of the anatomical image after appropriate scaling. The amount of structural input is weighted by the relative high frequency signal content of the two modalities. The method was validated on a digital Zubal phantom and clinical data to evaluate its quantitative potential. Results: Simulation studies showed the expected relationship between functional recovery and the amount of correct structural detail provided, with perfect recovery achieved when true images were used as anatomical reference. The use of T1-MRI images brought significant improvements in PET image resolution. However improvements were maximized when atlas-based segmented images as anatomical references were used; these results were replicated in clinical data sets. Conclusion: The synergistic use of functional and structural data, and the incorporation of anatomical probabilistic information in particular, generates morphologically corrected PET images of exquisite quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.