Abstract
We report the functional and structural characterization of trehalose-6-phosphate phosphatase (TPP), from the Gram-negative bacterium B. pseudomallei that causes melioidosis, a severe infectious disease endemic in Southeast Asia and Northern Australia. TPP is a key enzyme in the trehalose biosynthesis pathway, which plays an important role in bacterial stress responses. Due to the absence of this biosynthetic pathway in mammals, TPP has drawn attention as a potential drug target, to combat antibiotic resistance.In this context, we present a detailed biochemical analysis of purified recombinant TPP, reporting its specific high catalytic activity toward the trehalose-6-phosphate substrate, and an absolute requirement for its Mg2+ cofactor. Furthermore, we present the crystal structure of TPP solved at 1.74 Å, revealing the canonical haloacid dehalogenase (HAD) superfamily fold and conserved substrate binding pocket, from which insights into the catalytic mechanism may be deduced. Our data represent a starting point for the rational design of antibacterial drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.