Abstract
The evolution of enzyme catalytic structures and mechanisms has drawn increasing attention. In this study, we investigate the functional divergence from phosphomonoesterase to inorganic pyrophosphatase in the haloacid dehalogenase (HAD) superfamily. In this study, a series of models was constructed, and calculations were performed by using density functional theory with the B3LYP functional. The calculations suggest that in most HAD members, the active-site structure is unstable due to the binding of the substrate inorganic pyrophosphate (PPi), and reactions involving PPi cannot be catalyzed. In BT2127, which is a unique member of the HAD superfamily, the Mg2+-coordinating residues Asn172 and Glu47 play a role in stabilizing the active-site structure to adapt to the substrate PPi by providing much stronger coordination interactions with the Mg2+ ion. The calculation results suggest that Asn172 and Glu47 are crucial in the evolution of the inorganic pyrophosphatase activity in the HAD superfamily. Our study provides definitive chemical insight into the functional divergence of the HAD superfamily, and helps in understanding the evolution of enzyme catalytic structures and mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.