Abstract
We have examined the effect of alteration in cell shape on promoting differentiated morphology and physiology in cultured nonpigmented epithelial cells from the ciliary body. We have grown pure populations of nonpigmented cells on collagen gels released from the culture dish to create collagen rafts. Shortly after the gels were detached, the cells shrank in diameter and increased in height while they contracted the gel. Concurrently, the actin cytoskeleton reorganized to the cell cortex as found in vivo. After this differentiated morphology developed, large changes in intracellular Ca2+ could be elicited by simultaneous activation of acetylcholine and epinephrine or acetylcholine and somatostatin receptors as seen in intact tissue. Explant cultures of isolated nonpigmented cell layers maintained their actin distribution and also showed synergistic Ca2+ increases. Spread cells, grown on rigid substrates, had a disorganized cytoskeleton and rarely showed synergism. These data suggest that the mechanism underlying synergistic Ca2+ responses in the ciliary body is functional in nonpigmented cells grown on collagen rafts. In addition, this pathway appears to be sensitive to the disposition of the cell's cytoarchitecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Animal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.