Abstract

The WUSCHEL-Related Homeobox (WOX) family is a group of transcription factors unique to plants that play an important role in regulating key developmental processes such as stem cell maintenance and organ morphogenesis. As a rare and valuable Chinese herb, Dendrobium catenatum has a unique epiphytic lifestyle and growth and developmental characteristics, and a functional investigation of its WOX family genes can help to further understand the conserved and specific development of D. catenatum. In this study, we analyzed the phylogeny, spatio-temporal expression pattern and heterologous expression function of D. catenatum WOX family genes (DcWOX). The results showed that members of the D. catenatum WOX gene family could be divided into three evolutionary branches with significantly different tissue expression profiles. In transgenic Arabidopsis, overexpression of DcWOX4 resulted in significant dwarfism, pinnately leaf margins, and delayed flowering for 2 weeks; overexpression of DcWOX9 resulted in plant dwarfing, serrated leaf margin, delayed flowering for 1 week, and even male and female sterility in strong phenotype plants; overexpression of DcWOX11 caused curl downward leaf. The abnormal morphogenesis of DcWOX4/9/11 overexpression Arabidopsis leaves are related to the down-regulation of TCP family genes, CUC family genes and the up-regulation of KNOX family genes; Postponement of flowering is related to down-regulation of early flowering genes such as FT, SOC1 and CO. Therefore, this study showed that D. catenatum WOX family genes have important functions in regulating plant morphogenesis, leaf development, flowering time and fertility, further expanding the understanding of the WOX gene family function, and providing clues for the conservation and specificity during orchid development and evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call