Abstract

BackgroundSpinometry is a radiation-free method to three-dimensional spine imaging that provides additional information about the functional gait patterns related to the pelvis and lower extremities. This radiation-free technology uses the surface topography of the trunk to analyze surface asymmetry and identify bony landmarks, thereby aiding the assessment of spinal deformity and supporting long-term treatment regimes. Especially reliable dynamic spinometric data for spine and pelvis are necessary to evaluate the management of non-specific back pain. Research aimThis study aims to generate reliable dynamic spinometric data for spine and pelvis parameters that can serve as reference data for future studies and clinical practice. MethodsThis study assessed 366 subjects (185 females) under static and 360 subjects (181 females) under dynamic (walking on a treadmill at 3 km/h and 5 km/h) conditions. The DIERS Formetric 4Dmotion® system uses stripes of light to detect the surface topography of the spine and pelvis and identifies specific landmarks to analyze the spine during standing and walking. ResultsRelevant gender effects were calculated for lordotic angle (ηp2 = 0.22) and pelvic inclination (ηp2 = 0.26). Under static conditions, female subjects showed larger values for both parameters (lordotic angle: 41.6 ± 8.60°; pelvic inclination: 25.5 ± 7.49°). Regarding speed effects, three relevant changes were observed (sagittal imbalance: ηp2 = 0.74, kyphotic angle: ηp2 = 0.13, apical deviation: ηp2 = 0.11). The most considerable changes were observed between static condition and 3 km/h, especially for sagittal imbalance and lordotic angle. For these parameters, relevant effect sizes (d > 0.8) were calculated between static and 3 km/h for males and females. Concerning clinical vertebral parameters, only lordotic angle and pelvic inclination were correlated with each other (r = 0.722). ConclusionThis study generated a gender-specific reference database of asymptomatic individuals for static and dynamic spinometry. It demonstrated that the DIERS Formetric 4Dmotion® system could capture natural changes in static and dynamic situations and catalogue functional adaptations of spino-pelvic statics at different speeds. The lordotic angle is an indirect marker of pelvic inclination, allowing spinometry to identify individuals at risk even under dynamic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call