Abstract

For rapid growth, moso bamboo (Phyllostachys edulis) requires large amounts of nutrients. Nitrate is an indispensable molecular signal to regulate nitrogen absorption and assimilation, which are regulated by group III NIN-LIKE PROTEINs (NLPs). However, no Phyllostachys edulis NLP (PeNLP) has been characterized. Here, eight PeNLPs were identified, which showed dynamic expression patterns in bamboo tissues. Nitrate did not affect PeNLP mRNA levels, and PeNLP1, -2, -5, -6, -7, and -8 successfully restored nitrate signaling in Arabidopsis atnlp7-1 protoplasts through recovering AtNiR and AtNRT2.1 expression. Four group I and II PeNLPs (PeNLP1, -2, -5, and -8) interacted with the nitrate-responsive cis-element of PeNiR. Moreover, nitrate triggered the nuclear retention of PeNLP8. PeNLP8 overexpression in Arabidopsis significantly increased the primary root length, lateral root number, leaf area, and dry and wet weight of the transgenic plants, and PeNLP8 expression rescued the root architectural defect phenotype of atnlp7-1 mutants. Interestingly, PeNLP8 overexpression dramatically reduced nitrate content but elevated total amino acid content in Arabidopsis. Overall, the present study unveiled the potential involvement of group I and II NLPs in nitrate signaling regulation and provided genetic resources for engineering plants with high nitrogen use efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call