Abstract

Selecting rice varieties with a high nitrogen (N) use efficiency (NUE) is the best approach to reduce N fertilizer application in rice production and is one of the objectives of the Green Super Rice (GSR) Project in China. However, the performance of elite candidate GSR varieties under low N supply remains unclear. In the present study, differences in the grain yield and NUE of 13 and 14 candidate varieties with two controls were determined at a N rate of 100 kg ha−1 in field experiments in 2014 and 2015, respectively. The grain yield for all of the rice varieties ranged from 8.67 to 11.09 t ha−1, except for a japonica rice variety YG29, which had a grain yield of 6.42 t ha−1. HY549 and YY4949 produced the highest grain yield, reflecting a higher biomass production and harvest index in 2014 and 2015, respectively. Total N uptake at maturity (TNPM) ranged from 144 to 210 kg ha−1, while the nitrogen use efficiency for grain production (NUEg) ranged from 35.2 to 62.0 kg kg−1. Both TNPM and NUEg showed a significant quadratic correlation with grain yield, indicating that it is possible to obtain high grain yield and NUEg with the reduction of TNPM. The correlation between N-related parameters and yield-related traits suggests that promoting pre-heading growth could increase TNPM, while high biomass accumulation during the grain filling period and large panicles are important for a higher NUEg. In addition, there were significant and negative correlations between the NUEg and N concentrations in leaf, stem, and grain tissues at maturity. Further improvements in NUEg require a reduction in the stem N concentration but not the leaf N concentration. The daily grain yield was the only parameter that significantly and positively correlated with both TNPMand NUEg. This study determined variations in the grain yield and NUE of elite candidate GSR rice varieties and provided plant traits that could be used as selection criteria in breeding N-efficient rice varieties.

Highlights

  • Rice is one of the staple food crops for approximately half of the global population (Godfray et al, 2010), and rice production must increase by 70% by 2050 to satisfy the requirements of the growing world population (Koning et al, 2008; Godfray et al, 2010)

  • Cassman (1999) provided a more functional definition of yield potential, suggesting that this parameter is the yield obtained when an adapted cultivar is grown with the minimal possible stress, which is achieved by using the best management practices

  • The main dilemma is that new varieties that have a high yield potential were achieved using surplus nutrient application, suggesting that farmers should apply a higher amount of fertilizers than the minimum required to produce the highest grain yield in rice production (Peng et al, 2002)

Read more

Summary

Introduction

Rice is one of the staple food crops for approximately half of the global population (Godfray et al, 2010), and rice production must increase by 70% by 2050 to satisfy the requirements of the growing world population (Koning et al, 2008; Godfray et al, 2010). The main dilemma is that new varieties that have a high yield potential were achieved using surplus nutrient application, suggesting that farmers should apply a higher amount of fertilizers than the minimum required to produce the highest grain yield in rice production (Peng et al, 2002). The performance of these newly developed high-yielding varieties under low nutrient input remains unclear

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call