Abstract

The functional testing of individual circuits is essential for device manufacturers when integrated circuits have not satisfied design specifications. What is required for the functional testing of modern high-density and fast IC and large scale integration (LSI) circuits is a method which has a time resolution in the subnanosecond region and a spatial resolution in the submicrometer region. Furthermore, the test probe must be easy to position on the circuit, and inspection should be possible without having to remove the passivation glass oxide. The authors show that all of these requirements can be satisfied by using a scanning electron microscope (SEM) in the stroboscopic voltage contrast mode. A microcomputer-controlled SEM allows the testing of internal circuit operations with a time resolution of 0.2 ns, a spatial resolution of 0.2 /spl mu/m, and a voltage resolution of 50 mV. Application to a bipolar hex-inverter IC, a quadruple-multiplexer IC, and a 1024 bit PROM in the megahertz region is reported to demonstrate the efficiency of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.