Abstract

The mdxR gene located upstream of mdxD, encoding a maltogenic amylase, has been annotated as a member of LacI-type transcriptional regulator in Bacillus subtilis 168 but its function has not been investigated yet. In this study, expression pattern of the mdxR promoter (PmdxR) and effects of mdxR were investigated to elucidate the function of mdxR. Expression of PmdxR was monitored by the β-galactosidase activity expressed from the PmdxR-lacZ fusion integrated at the amyE locus on the chromosome. The promoter was induced by starch, β-cyclomaltodextrin, or maltose at early exponential phase and kept expressed until late stationary phase. However, it was repressed by glucose, sucrose, or glycerol, suggesting that it was under catabolite repression. Furthermore, interactions of MdxR and Spo0A to the DNA fragment carrying PmdxR or PmdxD were detected by mobility-shift assay, implying that MdxR was a novel transcription regulator for both genes, which were regulated also by Spo0A. The mdxR mutant impaired the expressions of mdxD and malL (encoding an α-glucosidase); degraded accumulated glycogen slower than the wild type and the mdxD mutant. Both of the mdxR and the mdxD mutants formed more endospores (50.95% and 47.10%) than the wild type (23.90%). Enhanced sporulation by these mutations could be of industrial interest where sporulation or endospores of B. subtilis matters. These results indicate that MdxR functions as a transcriptional regulator for mdxR, mdxD, and other genes in the gene cluster that is related to the maltose/maltodextrin metabolism. MdxR and MdxD are also involved in glycogen metabolism and sporulation, tentatively by modulating the net energy balance in the cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call