Abstract

The relative contributions of the PSII-dependent and Nda2-dependent pathways for H2 photoproduction were investigated in the green microalga Chlamydomonas reinhardtii after suphur-deprivation. For this purpose, H2 gas production was compared for wild-type and Nda2-deficient cells with or without DCMU (a PSII-inhibitor) in the same experimental conditions. Nda2-deficiency caused a 30% decrease of the maximal H2 photoevolution rate observed shortly after the establishment of anoxia, and an acceleration of the decline of H2 photoevolution rate with time. DCMU addition to Nda2-deficient cells completely inhibited H2 photoproduction, showing that the PSII-independent H2 photoproduction relies on the presence of Nda2, which feeds the photosynthetic electron transport chain with electrons derived from oxidative catabolism. Nda2-protein abundance increased as a result of sulphur deprivation and further during the H2 photoproduction process, resulting in high rates of non-photochemical plastoquinone reduction in control cells. Nda2-deficiency had no significant effect on photosynthetic and respiratory capacities in sulphur-deprived cells, but caused changes in the cell energetic status (ATP and NADPH/NADP+ ratio). The rapid decline of H2 photoevolution rate with time in Nda2-deficient cells revealed a more pronounced inhibition of H2 photoproduction by accumulated H2 in the absence of non-photochemical plastoquinone reduction. Nda2 is therefore important for linking H2 photoproduction with catabolism of storage carbon compounds, and seems also involved in regulating the redox poise of the photosynthetic electron transport chain during H2 photoproduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call