Abstract

Exosomes are a subtype of extracellular vesicles released from different cell types including those in the nervous system, and are enriched in a variety of bioactive molecules such as RNAs, proteins and lipids. Numerous studies have indicated that exosomes play a critical role in many physiological and pathological activities by facilitating intercellular communication and modulating cells’ responses to external environments. Particularly in the central nervous system, exosomes have been implicated to play a role in many neurological disorders such as abnormal neuronal development, neurodegenerative diseases, epilepsy, mental disorders, stroke, brain injury and brain cancer. Since exosomes recapitulate the characteristics of the parental cells and have the capacity to cross the blood-brain barrier, their cargo can serve as potential biomarkers for early diagnosis and clinical assessment of disease treatment. In this review, we describe the latest findings and current knowledge of the roles exosomes play in various neurological disorders and brain cancer, as well as their application as promising biomarkers. The potential use of exosomes to deliver therapeutic molecules to treat diseases of the central nervous system is also discussed.

Highlights

  • Extracellular vesicles (EV) were first described in 1967 as “platelet dusts” in plasma[1]

  • As a critical mediator for cell communication, exosomes have been reported to augment the progression of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Prion disease, Amyotrophic lateral sclerosis and Huntington’s disease, via delivery of proteins or molecules associated with the pathology of such diseases [Table 1]

  • Exosomal miRNA such as miR223, miR-21-5p and miRNA-30a-5p were reported to be highly related with occurrence and severity of stroke in several clinical studies[182,183]. These results suggest that designing a multiplex platform to assay for multiple biomarker molecules in exosomes known to be associated with stroke might be a promising approach for diagnosis and clinical progress evaluation of stroke patients, especially with the advancement of exosome isolation and purification techniques

Read more

Summary

Introduction

Extracellular vesicles (EV) were first described in 1967 as “platelet dusts” in plasma[1]. As a critical mediator for cell communication, exosomes have been reported to augment the progression of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Prion disease, Amyotrophic lateral sclerosis and Huntington’s disease, via delivery of proteins or molecules associated with the pathology of such diseases [Table 1]. Studies showed that infection of N2a neuroblastoma cells with prions associated with scrapie could induce the release of prion proteins into the medium, predominantly via exosomes[125].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call