Abstract
Acute ischemic stroke (AIS) accounts for the majority of all stroke, globally the second leading cause of death. Due to its rapid development after onset, its early diagnosis is crucial. We aim to identify potential highly reliable blood-based biomarkers for early diagnosis of AIS using quantitative plasma lipid profiling via a machine learning approach. Lipidomics was used for quantitative plasma lipid profiling, based on ultra-performance liquid chromatography tandem mass spectrometry. Our samples were divided into a discovery and a validation set, each containing 30 AIS patients and 30 health controls (HC). Differentially expressed lipid metabolites were screened based on the criteria VIP > 1, p < 0.05, and fold change > 1.5 or < 0.67. The least absolute shrinkage and selection operator (LASSO) and random forest algorithms in machine learning were used to select differential lipid metabolites as potential biomarkers. Three key differential lipid metabolites, CarnitineC10:1, CarnitineC10:1-OH and Cer(d18:0/16:0), were identified as potential biomarkers for early diagnosis of AIS. The former two, associated with thermogenesis, were down-regulated, whereas the latter, associated with necroptosis and sphingolipd metabolism, was upregulated. Univariate and multivariate logistic regressions showed that these three lipid metabolites and the resulting diagnostic model exhibited a strong ability in discriminating between AIS patients and HCs in both the discovery and validation sets, with an area under the curve above 0.9. Our work provides valuable information on the pathophysiology of AIS and constitutes an important step toward clinical application of blood-based biomarkers for diagnosing AIS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.