Abstract

C2H2 zinc finger (C2H2-ZF) transcription factors participate in various aspects of normal plant growth regulation and stress responses. C1-2i C2H2-ZFs are a special subclass of conserved proteins that contain two ZnF-C2H2 domains. Some C1-2i C2H2-ZFs in Arabidopsis (ZAT) are involved in stress resistance and other functions. However, there is limited information on C1-2i C2H2-ZFs in Populus trichocarpa (PtriZATs). To analyze the function and evolution of C1-2i C2H2-ZFs, eleven PtriZATs were identified in P. trichocarpa, which can be classified into two subgroups. The protein structure, conserved ZnF-C2H2 domains and QALGGH motifs, showed high conservation during the evolution of PtriZATs in P. trichocarpa. The spacing between two ZnF-C2H2 domains, chromosomal locations and cis-elements implied the original proteins and function of PtriZATs. Furthermore, the gene expression of different tissues and stress treatment showed the functional differentiation of PtriZATs subgroups and their stress response function. The analysis of C1-2i C2H2-ZFs in different Populus species and plants implied their evolution and differentiation, especially in terms of stress resistance. Cis-elements and expression pattern analysis of interaction proteins implied the function of PtriZATs through binding with stress-related genes, which are involved in gene regulation by via epigenetic modification through histone regulation, DNA methylation, ubiquitination, etc. Our results for the origin and evolution of PtriZATs will contribute to understanding the functional differentiation of C1-2i C2H2-ZFs in P. trichocarpa. The interaction and expression results will lay a foundation for the further functional investigation of their roles and biological processes in Populus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call