Abstract
Drought significantly affects plant growth and has devastating effects on crop production, NAC transcription factors respond to abiotic stresses by activating gene expression. In this study, a maize NAC transcription factor, ZmNAC33, was cloned and characterized its function in Arabidopsis. Transient transformation in Arabidopsis leaves mesophyll protoplasts and trans-activation assays in yeast showed that ZmNAC33 was localized in the nucleus and had transactivation activity. qRT-PCR analysis showed that ZmNAC33 in maize was induced by drought, high salinity and abscisic acid (ABA) stress. Promoter analysis identified multiple stress-related cis-acting elements in the promoter region of ZmNAC33. In ZmNAC33 transgenic Arabidopsis, germination rates were higher than in wild type plants under ABA and osmotic stress at the germination stage, and overexpression lines exhibited higher survival rates and higher antioxidant enzyme activities compared with wild type under drought stress. These results indicate that ZmNAC33 actes as a positive regulator in drought tolerance in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.