Abstract

Fumaric acid is one of the most promising biorefinery platform chemicals, fruit residues being a very suitable raw material for its production in second generation biorefineries. In particular, apple pomace is a plentiful residue from the apple juice industry, with apple being the second largest fruit crop in the world, with a production that increased from 46 to 86 Mtons in the 1994–2021 period. With a global apple juice production of more than 4.5 Mtons, a similar amount of apple pomace is produced yearly. In this work, apple pomace hydrolysate has been obtained by enzymatic hydrolysis and further characterized for its content in sugars, phenolics and nitrogen using different analytic methods, based on HPLC and colorimetric techniques. Previous to the use of this hydrolysate (APH), we studied if the addition of fructose to the usual glucose-rich broth could lead to high fumaric acid yields, titers and productivities. Afterwards, APH fermentation was performed and improved using different nitrogen initial amounts, obtaining production yields (0.32 gFumaric acid/gconsumed sugar) similar to those obtained with synthetic media (0.38 gFumaric acid/gconsumed sugar). Kinetic modelling was employed to evaluate, explain, and understand the experimental values and trends of relevant components in the fermentation broth as functions of the bioprocess time, proposing a suitable reaction scheme and a non-structured, non-segregated kinetic model based on it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call