Abstract

We report on the resonant excitation of spin waves in micro-structured magnetic thin films by short-wavelength surface acoustic waves (SAWs). The spin waves as well as the acoustic waves are studied by micro-focused Brillouin light scattering spectroscopy. At low magnetic bias fields, a resonant phonon–magnon conversion is possible, which results in the excitation of short-wavelength spin waves. Using micromagnetic simulations, we verify that during this excitation both energy and linear momentum are conserved and fully transferred from the SAW to the spin wave. This conversion can already be detected after an interaction length of a few micrometers. Thus, our findings pave the way for miniaturized magneto-elastic spin-wave emitters for magnon computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.