Abstract
Previous studies have demonstrated the use of crystalline organic semiconductors to detect and localize the passage of charged particles and energetic radiation. [1-6] In this context, polycrystalline bis-(triisopropylsilylethynyl)pentacene (TIPS-pentacene) was printed onto polyethylene naphthalate (PEN) substrates patterned with parylene-C dielectric, PEDOT electrodes and gold pads to form fully organic flexible x-ray detectors. The electrodes were patterned using orthogonal photolithography and oxygen reactive ion etching to define a width/length (W/L) = 100 µm/10 µm. An organic voltage divider built using these materials was hot bar bonded to a printed circuit board (PCB) via a flexible conducting tape to form a complete sensor system. The devices were irradiated with a variety of localized and large area sources and the output was extracted from the node between the two resistors and then connected to an operational amplifier via a second PCB. Dark currents for each resistor were in the 100 pA - 1 nA range. The device demonstrated has the potential to be applied in microdosimetry to allow for detection using a cross-section that matches organic tissue forming a solid state tissue equivalent detector (SSTED) [7].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have