Abstract

This paper presents the latest progress toward fully embedded board-level optical interconnects in the aspect of waveguide fabrication and device integration. A one-step pattern transfer method is used to form a large cross-section multimode waveguide array with 45deg micromirrors by silicon hard molding method. Optimized by a novel spin-coating surface smoothing method for the master mold, the waveguide propagation loss is reduced to 0.09 dB/cm. The coupling efficiency of the metal-coated reflecting mirror, which is embedded in the thin-film waveguide, is simulated by an M <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> factor revised Gaussian beam method and is experimentally measured to be 85%. The active optoelectronic devices, vertical surface emitter lasers and p-i-n photodiodes, are integrated with the mirror-ended waveguide array and successfully demonstrate a 10 Gbps signal transmission over the embeddable optical layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.