Abstract
We present a fully dynamic algorithm for the recognition of proper circular-arc (PCA) graphs. The allowed operations on the graph involve the insertion and removal of vertices (together with its incident edges) or edges. Edge operations cost O(log n) time, where n is the number of vertices of the graph, while vertex operations cost O(log n + d) time, where d is the degree of the modified vertex. We also show incremental and decremental algorithms that work in O(1) time per inserted or removed edge. As part of our algorithm, fully dynamic connectivity and co-connectivity algorithms that work in O(log n) time per operation are obtained. Also, an O(\Delta) time algorithm for determining if a PCA representation corresponds to a co-bipartite graph is provided, where \Delta\ is the maximum among the degrees of the vertices. When the graph is co-bipartite, a co-bipartition of each of its co-components is obtained within the same amount of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.