Abstract

This paper proposes a new distributed cooperative secondary control for both frequency and voltage restoration of an islanded microgrid with droop-controlled, inverter-based distributed generations (DGs). Existing distributed methods commonly design secondary control based on the minimum real part of the nonzero Laplacian matrix eigenvalues related to the microgrid communication graph, which, however, is global information. In contrast to the existing distributed methods, in this paper we design a fully distributed adaptive control based on the dynamic model of DG units and on information from neighboring units. Therefore, the proposed control scheme increases the system reliability, decreases its sensitivity to failures, and eliminates the need for a central processing unit. The fully distributed controllers restore the islanded microgrid frequency and voltage magnitudes to their reference values for all DG units irrespective of parametric uncertainties and disturbances while providing accurate real power sharing. Furthermore, the proposed method considers the coupling between the islanded microgrid frequency and voltages. Finally, we have conducted comprehensive simulation studies in the MATLAB/SimPowerSystems toolbox to verify the proposed control strategy performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.