Abstract

In general, owing to the benefits obtained from original information, full-reference image quality assessment (FR-IQA) achieves relatively higher prediction accuracy than no-reference image quality assessment (NR-IQA). By fully utilizing reference images, conventional FR-IQA methods have been investigated to produce objective scores that are close to subjective scores. In contrast, NR-IQA does not consider reference images; thus, its performance is inferior to that of FR-IQA. To alleviate this accuracy discrepancy between FR-IQA and NR-IQA methods, we propose a blind image evaluator based on a convolutional neural network (BIECON). To imitate FR-IQA behavior, we adopt the strong representation power of a deep convolutional neural network to generate a local quality map, similar to FR-IQA. To obtain the best results from the deep neural network, replacing hand-crafted features with automatically learned features is necessary. To apply the deep model to the NR-IQA framework, three critical problems must be resolved: 1) lack of training data; 2) absence of local ground truth targets; and 3) different purposes of feature learning. BIECON follows the FR-IQA behavior using the local quality maps as intermediate targets for conventional neural networks, which leads to NR-IQA prediction accuracy that is comparable with that of state-of-the-art FR-IQA methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.