Abstract

Screen content image (SCI) is a composite image including textual and pictorial regions resulting in many difficulties in image quality assessment (IQA). Large SCIs are divided into image patches to increase training samples for CNN training of IQA model, and this brings two problems: (1) local quality of each image patch is not equal to subjective differential mean opinion score (DMOS) of an entire image; (2) importance of different image patches is not same for quality assessment. In this paper, we propose a novel no-reference (NR) IQA model based on the convolutional neural network (CNN) for assessing the perceptual quality of SCIs. Our model conducts two designs solving problems which benefits from two strategies. For the first strategy, to imitate full-reference (FR) CNN-based model behavior, a CNN-based model is designed for both FR and NR IQA, and performance of NR-IQA part improves when the image patch scores predicted by FR-IQA part are adopted as the ground-truth to train NR-IQA part. For the second strategy, image patch qualities of one entire SCI are fused to obtain the SCI quality with an adaptive weighting method taking account the effect of the different image patch contents. Experimental results verify that our model outperforms all test NR IQA methods and most FR IQA methods on the screen content image quality assessment database (SIQAD). On the cross-database evaluation, the proposed method outperforms the existing NR IQA method in terms of at least 2.4 percent in PLCC and 2.8 percent in SRCC, which shows high generalization ability and high effectiveness of our model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.