Abstract

In order to make a missing at random (MAR) or ignorability assumption realistic, auxiliary covariates are often required. However, the auxiliary covariates are not desired in the model for inference. Typical multiple imputation approaches do not assume that the imputation model marginalizes to the inference model. This has been termed "uncongenial" [Meng (1994, Statistical Science 9, 538-558)]. In order to make the two models congenial (or compatible), we would rather not assume a parametric model for the marginal distribution of the auxiliary covariates, but we typically do not have enough data to estimate the joint distribution well non-parametrically. In addition, when the imputation model uses a non-linear link function (e.g., the logistic link for a binary response), the marginalization over the auxiliary covariates to derive the inference model typically results in a difficult to interpret form for the effect of covariates. In this article, we propose a fully Bayesian approach to ensure that the models are compatible for incomplete longitudinal data by embedding an interpretable inference model within an imputation model and that also addresses the two complications described above. We evaluate the approach via simulations and implement it on a recent clinical trial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.