Abstract

Controllable image captioning has recently gained attention as a way to increase the diversity and the applicability to real-world scenarios of image captioning algorithms. In this task, a captioner is conditioned on an external control signal, which needs to be followed during the generation of the caption. We aim to overcome the limitations of current controllable captioning methods by proposing a fully-attentive and iterative network that can generate grounded and controllable captions from a control signal given as a sequence of visual regions from the image. Our architecture is based on a set of novel attention operators, which take into account the hierarchical nature of the control signal, and is endowed with a decoder which explicitly focuses on each part of the control signal. We demonstrate the effectiveness of the proposed approach by conducting experiments on three datasets, where our model surpasses the performances of previous methods and achieves a new state of the art on both image and video controllable captioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.