Abstract
A fully 3-dimensional implicit numerical model for comet nucleus evolution is presented, emphasizing dust mantle formation. A spherical configuration is considered with an initial composition of amorphous H 2O ice and dust, taking into account a discrete dust-grain size distribution. The model is applied to Comet 67P/Churyumov–Gerasimenko, adopting its orbital elements, rotation period and rotation axis inclination. We find that the dust mantle thickness varies over the surface from 1 cm to about 10 cm (thus lower and higher than the diurnal skin-depth, respectively). The size distribution of ejected grains varies along the orbit and is steeper than the initial one adopted for the nucleus. The crystallization front advances inward in spurts, and its depth varies between 1 and several meters. We test the effect of the thermal conductivity on the surface temperature distribution and depths of the dust mantle and crystallization front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.