Abstract

Abstract— CM chondrites are regolith breccias consisting of lithic clasts embedded in a fine‐grained clastic matrix. The majority of these lithic clasts belongs to a texturally well‐defined rock type (primary rock) that can be described as an agglomerate of chondrules and other coarse‐grained components, most of which are surrounded by fine‐grained rims (dust mantles). Metzler et al. (1992) explain these textures as the result of accretionary processes in the solar nebula, while an alternative model explains them to be the result of regolith processes on the parent body (Sears et al. 1993).The main intention of the present study is to discern between both models by investigating the occurrence, frequency, spatial distribution, and textural setting of preirradiated (track‐rich) olivines in CM chondrites. Track‐rich olivines were studied in situ in six polished thin sections from 4 different CM chondrites (Cold Bokkeveld, Mighei, Murchison, Nogoya) by optical and scanning electron microscopy (SEM). It was found that their occurrence is restricted to the clastic matrix of these meteorites. The primary rock seems to have formed in an environment shielded from cosmic radiation, since fragments of this rock are free of track‐rich grains and solar noble gases. This finding supports the solar nebula model for the formation of dust mantles around chondrules and other coarse‐grained components, and points against a regolith origin.In Cold Bokkeveld, a small breccia‐in‐breccia clast was found, which has been irradiated as an entity within the uppermost millimeters to meters of its parent body for at least about 3 Ma. This clast seems to represent a compacted subsurface layer that was later excavated by impact and admixed to the host breccia.Furthermore, the results of this study may affect the interpretation of compaction ages obtained by fission track methods, since these ages may be mixtures of different contact ages between finegrained, U‐rich dust and U‐poor olivines. In some cases, they may date the formation of dust mantles in the solar nebula, while in other cases the lithification of the host breccias may be dated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call