Abstract

A highly selective and sensitive aptasensor for detecting patulin (PAT) was constructed based on the fluorescence quenching of fullerenol quantum dots (FOQDs) towards carboxytetramethylrhodamine (TAMRA) through PET mechanism. The π-π stacking interaction between PAT aptamer and FOQDs closed the distance between TAMRA and FOQDs and the fluorescence of TAMRA was quenched with maximum quenching efficiency reaching 85%. There was no non-specific fluorescence quenching caused by FOQDs. In the presence of PAT, the PAT aptamer was inclined to bind with PAT and its conformation was changed. Resulting in the weak π-π stacking interaction between PAT aptamer and FOQDs. Therefore, the fluorescence of TAMRA recovered and was linearly correlated to the concentration of PAT in the range of 0.02–1 ng/mL with a detection limit of 0.01 ng/mL. This PAT aptasensor also performed well in apple juice with linear dynamic range from 0.05–1 ng/mL. The homogeneous fluorescence aptasensor shows broad application prospect in the detection of various food pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.