Abstract

Fe–29Al–2Cr powders with nanoscale grain sizes were produced by mechanical milling of prealloyed intermetallic powders. A consolidation procedure employing high-pressure, low strain rate hot forging (sinter-forging) has been developed to consolidate the powders into full-density compacts. The relative density and average grain size of the compact have been studied as a function of consolidation temperature at constant pressure. Fully dense compacts (>99.5% theoretical density) were produced at a relatively low temperature of 545°C with a pressure of 1.25 GPa. Transmission electron microscopy and x-ray diffraction analysis indicate that the average grain size has been maintained to the order of 30 nm in samples consolidated under these conditions. By using protective Ar atmosphere during mechanical milling and consolidation, contamination of oxygen and carbon in consolidated samples has been controlled to below a small fraction of an atomic percent. Microhardness tests of nanocrystalline Fe–29Al–2Cr samples indicate a significant strengthening effect due to grain size refinement and a monotonic hardness increase with decreasing residual porosity. Our work demonstrates the feasibility of using mechanically milled powders as the source of nanocrystalline materials for the production of fully dense, low-impurity, nanocrystalline bulk samples needed for reliable mechanical property measurements and practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.