Abstract
Purpose The purpose of this research is to investigate the feasibility of using the components series connection (CSC) method to predict the performance of a newly developed micro turbine engine (MTE) under rated operating condition. Design/methodology/approach The main research object is the MTE with known factory performance parameters, and the finite element method is used to discretize its main components into a full-cycle grid and then simulate it in the computational fluid dynamics method under rated operating condition using the CSC method. Finally, compare the results obtained by numerical simulations with the factory design parameters of the MTE. Findings The performance and flow field of MTE and each component were simulated and obtained. Compared with the factory design parameters, the errors are acceptable, with the outlet average total temperature and thrust exhibiting errors of 1.4% and 7.6%, respectively. Practical implications This paper introduces a faster and more convenient method for simulating the performance of MTE components and the entire engine while also making the simulations more realistic. The method was used to analyze the performance of the components and the whole engine of a newly developed MTE. Originality/value This research validates the feasibility of evaluating the overall performance of the MTE using the CSC method and provides a new method to solve performance calculations for MTE under any known working conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.