Abstract

Self-propulsion computations of the KCS containership are performed in full-scale with direct discretization of the propeller. A dynamic overset approach is used, which allows for arbitrary rotational speed of the propeller during the computation. The self-propulsion point is obtained using a controller to modify the propeller RPS until the target speed is reached. To obtain propulsion coefficients the open-water curves of the propeller and a towed, unpropelled case are also computed. Together, these computations provide for a complete CFD prediction of self-propulsion factors at full scale. The main differences with a similar model scale simulation following the ITTC procedures are identified and reported. The effect of these differences in the propeller operation point and performance are thoroughly studied and discussed. It is concluded that for this case the propeller operates more efficiently in full scale and is subject to smaller load fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call