Abstract

Well-designed field full-scale model tests were carried out to enhance the understanding of geogrid-reinforced and floating pile-supported (GRFPS) embankments constructed on medium compressibility soil (MCS). Two comparative test sections of GRFPS embankments with and without pile caps were built over silty clay with medium compressibility for field monitoring, over 25 months. The heavily instrumented embankments produced comprehensive high-quality data. Settlement, earth pressure, and geogrid strain measurements during embankment filling stages and the postconstruction placement stage were conducted. The influence of pile cap installation on the differential deformation and load transfer behaviour of the GRFPS embankment was evaluated. The results demonstrate the installation of pile caps can significantly improve the evolution characteristics of the stress increment ratio on the pile, facilitating a change in load sharing of the pile top from a “softening” feature to a “hardening” feature. The state of the “arching structure” heavily depends on the relative displacement. After the maximum arching is formed, although the subgrade load continuously increases, the arching enters the damage and recovery state, and the transfer of the overburden load increment is largely conducted by the tensioned membrane effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call