Abstract

Decentralized treatment of wastewater in rural areas usually has several challenges, which include large fluctuations in pollutant concentration and water quantity, complicated operation and maintenance of conventional biochemical treatment equipment, resulting in poor stability and a low compliance rate of the wastewater treatment process. In order to solve the above problems, a new integration reactor is designed, which uses gravity and aeration tail gas self-reflux technology to realize the reflux of sludge and the nitrification liquid, respectively. The feasibility and operation characteristics of its application for decentralized wastewater treatment in rural areas are explored. The results demonstrated that, under constant influent, the device showed strong tolerance to the shock of pollutant load. The chemical oxygen demand, NH4+-N, total nitrogen and total phosphorus fluctuated in the ranges of 95–715 mg/L, 7.6–38.5 mg/L, 9.32–40.3 mg/L and 0.84–4.9 mg/L, respectively. The corresponding effluent compliance rates were 82.1%, 92.8%, 96.4% and 96.3%, respectively. When the wastewater discharge was non-constant and the maximum single-day Qmax/Qmin reached 5, all indicators of the effluent met the relevant discharge standard. The integrated device also demonstrated high phosphorus enrichment levels in its anaerobic zone; the concentration of phosphorus reached a maximum of 26.9 mg/L, which created a good environment for phosphorus removal. The microbial community analysis showed that sludge digestion, denitrification, and phosphorus-accumulating bacteria all played an important role in pollutant treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call