Abstract

Cabbage waste (CW) was recycled for generating some potential high-value products by a multi-stage treatment technology. A novel multi-stage utilization process was successfully proposed which consisted of low-temperature extraction, medium-temperature thermolysis, and high-temperature activation. Plant extracts that contain fatty acids, alcohol, furan, and esters were first extracted from raw cabbage waste by ethanol at 70 °C. Pyrolytic oil was obtained by cabbage waste pyrolysis at different medium temperature conditions. The produced carbon residue was further activated at high temperature for environmental purification such as VOCs removal. The performance of this process was characterized by N2 isothermal adsorption, Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG) and gas chromatography–mass spectrometry (GC–MS). Experimental results showed that the optimum temperatures for extraction, pyrolysis, and activation were 70 °C, 520 °C and 700 °C, respectively. Phenolic-rich pyrolysis solution with 50% phenolic contents could be obtained with the potential application of botanical pesticide. The produced biochar had a BET surface area of as high as 891.12 m2/g. The yields of biochar, pyrolytic liquid, and pyrolytic gas were 43.86%, 17.47%, 38.67%, respectively, and the process energy efficiency was over 42.7%. Applicability and feasibility of this process were also discussed in the aspects of energy quality balance, economy, and environment. The proposed multi-stage thermal-chemical process could be used as a full recycling method for biomass waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.