Abstract

Single-beam spectrally controlled (SBSC) two-dimensional (2D) Raman spectroscopy is a unique 2D vibrational measurement technique utilizing trains of short pulses that are generated from a single broadband pulse by pulse shaping. This approach overcomes the difficulty of 2D Raman spectroscopy in dealing with small-signal extraction and avoids complicated low-order cascading effects, thus providing a new possibility for measuring the intramolecular and intermolecular modes of molecular liquids using fifth-order 2D Raman spectroscopy. Recently, for quantitatively investigating the mode-mode coupling mechanism, Hurwitz et al. [Opt. Express 28, 3803 (2020)] have developed a new pulse design for this measurement to separate the contributions of the fifth- and third-order polarizations, which are often overlapped in the original single-beam measurements. Here, we describe a method for simulating these original measurements and the new 2D Raman measurements on the basis of a second-order response function approach. We carry out full molecular dynamics simulations for carbon tetrachloride and liquid water using an equilibrium-nonequilibrium hybrid algorithm, with the aim of explaining the key features of the SBSC 2D Raman spectroscopic method from a theoretical point of view. The predicted signal profiles and intensities provide valuable information that can be applied to 2D spectroscopy experiments, allowing them to be carried out more efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call