Abstract

The article investigates full information control problem for switched neural networks subject to fault and disturbance. First, the main objective is realizing interval stability and zero tracking error under condition that neither of the neuron states' vectors including the plant and reference models is available. Second, the desired full information controller and neural networks' observer are designed to ensure observer-based dynamic error system mean-square exponentially stable with sufficient condition of strict weight H∞ /H- performance levels. Finally, we concentrate on stability analyses and fault tolerance for switched neural networks with fault accompanied by disturbance through linear matrix inequalities (LMIs), Lyapunov function, and average dwell time, discussing it according to different values of fault. Finally, simulation examples are listed to account for the availability and effectiveness of the research methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.