Abstract

The objective of this study was to investigate the removal of Remazol Yellow dye from aqueous solutions by adsorption on activated carbon prepared by chemical activation of sunflower seed cake. It was found that the carbon content of biomass increases up to 65.12% after activation and carbonization processes. The maximum percentage dye removal was obtained as 82.12% with 0.4 g/50 mL adsorbent dosage at 313 K. The Langmuir model showed the best fit with equilibrium isotherm data. The interactions were evaluated with respect to both pseudo-first-order and pseudo-second-order reaction kinetics. The adsorption process was found to follow the pseudo-second-order model. To optimize the operating conditions, the effects of pH, adsorbent dosage, and initial dye concentration were investigated by full factorial experimental design method; adsorbent dosage was found as the most significant factor with lower than 95% confidence level. The obtained results are very promising since (i) the utilization of sunflower seed cake activated carbon (SSCAC) played a critical role in the adsorption of dye; (ii) sunflower seed cake was an intriguing, low-cost, and easily available material. It can be an alternative adsorbent precursor for more expensive adsorbents used for Remazol Yellow (RY) removal.

Highlights

  • Changing technologies, industrial products, and applications are causing worldwide waste problem and contaminating the environment

  • The carbon content and calorific value increased significantly whereas the oxygen content decreased in the sample, which indicates that activated carbon was more carbonaceous material than sunflower seed cake

  • The results indicated that the adsorption reaction of Remazol Yellow (RY) adsorbed by sunflower seed cake activated carbon (SSCAC) was an endothermic process in nature

Read more

Summary

Introduction

Industrial products, and applications are causing worldwide waste problem and contaminating the environment. Reactive dyes are the most common dyes used due to their favorable characteristics of bright color, water fastness, simple application techniques, and low energy consumption. They exhibit a wide range of different chemical structures, primarily based on substituted aromatic and heterocyclic groups [18, 19]. They are not biodegradable; the color may remain in the effluent even after extensive treatment [18, 20]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call