Abstract

This work focuses on the adsorptive removal of patent blue V (PBV) dye from aqueous solution by Zn/Al layered double hydroxide in fresh (LDH) and calcined (CLDH) forms. The material was synthesized via coprecipitation and samples were characterized by XRD, FTIR and TGA-DTA. Dye retention was evaluated under different experimental conditions of contact time, pH, adsorbent dosage, temperature and initial dye concentration. Experimental results show that highest adsorption capacity occurred at acidic medium. Kinetics data were properly fitted with the pseudo-second-order model. Equilibrium data were best correlated to Langmuir model with maximum monolayer adsorption capacities of 185.40 and 344.37 mg/g, respectively, for LDH and CLDH. The process was endothermic and spontaneous in nature. Based on the preliminary study, full factorial experimental design (24) was used for the optimization of the effect of solution pH, adsorbent dose, initial dye concentration and the calcination. Thus, the optimal conditions to reach high equilibrium adsorption capacity were achieved at pH of 5, adsorbent dosage of 0.1 g/L, and initial dye concentration of 15 mg/L by CLDH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call