Abstract

Navier-Stokes equations for compressible quantum fluids, including the energy equation, are derived from a collisional Wigner equation, using the quantum entropy maximization method of Degond and Ringhofer. The viscous corrections are obtained from a Chapman-Enskog expansion around the quantum equilibrium distribution and correspond to the classical viscous stress tensor with particular viscosity coefficients depending on the particle density and temperature. The energy and entropy dissipations are computed and discussed. Numerical simulations of a one-dimensional tunneling diode show the stabilizing effect of the viscous correction and the impact of the relaxation terms on the current-voltage charcteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call