Abstract
ABSTRACT Fast and high-precision urban scene 3D modeling is the foundational data infrastructure for the digital earth and smart cities. However, due to challenges such as water-area matching difficulties and issues like data redundancy and insufficient observations, existing full-automatic 3D modeling methods often result in water-area missing and many small holes in the models and insufficient local-model accuracy. To overcome these challenges, full-automatic high-precision scene 3D reconstruction method with water-area intelligent complementation on depth maps and mesh optimization is proposed. Firstly, SfM was used to calculated image poses and PatchMatch was used to generated initial depth maps. Secondly, a simplified GAN extracted water-area masks and ray tracing was used achieve high-precision auto-completed water-area depth values. Thirdly, fully connected CRF optimized water-areas and arounds in depth maps. Fourthly, high-precision 3D point clouds were obtained using depth map fusion based on clustering culling and depth least squares. Then, mesh was generated and optimized using similarity measurement and vertex gradients to obtain refined mesh. Finally, high-precision scene 3D models without water-area missing or holes were generated. The results showed that: to compare with the-state-of-art ContextCapture, the proposed method enhances model completeness by 14.3%, raises average accuracy by 14.5% and improves processing efficiency by 63.6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.