Abstract

The peri-urban and urban forests in Greece occupy a total area of 105.353 ha. In these vulnerable ecosystems, fire constitutes a natural disaster presenting particular challenges and specific difficulties. These include the high number of visitors as well as the forest characteristics, such as the presence of particularly flammable tree species and the high accumulation of combustible biomass, that make the on-start of fires more likely. The main purpose of the current research is to identify the optimum combination of silvicultural treatments to efficiently reduce potential severity of forest fires and to facilitate their successful suppression by firefighting crews. In order to simulate the basic fire environment of urban forests, two main experimental plots were established and several tree and topographical characteristics were measured. Additionally, a crown fire hazard modelling system (NEXUS) was used to simulate forest fire potential behavior before and after the adoption of the silvicultural treatments that altered critical characteristics of the forest fire environment. The results clearly show that specific silvicultural prescriptions altered the type of forest fire spreading potential, revealing the overall efficiency of preventing actions during forest management.

Highlights

  • For many decades, Greece has encountered the devastating effects of uncontrolled wildfires in terms of human life and property losses, extended soil degradations, and alterations in vegetation composition

  • Despite the fact that fires constitute an integral part of the ecosystems in the Mediterranean Basin [10], most of the mitigation efforts has focused on fire suppression after ignition rather than on prevention through fuel management actions

  • The properties for each fuel model are described in detail by Rothermel [48] and Fire

Read more

Summary

Introduction

Greece has encountered the devastating effects of uncontrolled wildfires in terms of human life and property losses, extended soil degradations, and alterations in vegetation composition. During the last 30 years, destructive forest fires burned millions of hectares of forests and forested lands, with the most devastating events occurring in Lesvos in 1982, Samos in 1983, Ikaria in. Despite the fact that fires constitute an integral part of the ecosystems in the Mediterranean Basin [10], most of the mitigation efforts has focused on fire suppression after ignition rather than on prevention through fuel management actions. Unlike other parts of the world where a large percentage of fires are naturally caused (especially by lightning), the Mediterranean Basin is marked by the prevalence of human-induced fires. Natural causes are responsible for only a small percentage of all fires (1–5%) [11].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.