Abstract

An optimal control based methodology is proposed for minimising the combustible fuel consumption of a hybrid vehicle equipped with an internal combustion engine, a high-speed flywheel and a battery. The three-dimensionality of the road is recognised by the optimal control calculations. Fuel efficiency is achieved by optimally exploiting the primary and secondary energy sources and controlling the vehicle so that the fuel consumption is minimised for a given, but arbitrary three-dimensional route. A time-of-arrival constraint rather than a driving cycle is used. The benefits of using multiple auxiliary storage systems are demonstrated and a lower-bound estimate of the fuel consumption is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.