Abstract

A tool dedicated to assess fuel economy induced by kite propulsion has been developed. To produce reliable results, computations must be performed on a period over several years, for several routes and for several ships. In order to accurately represent the impact of meteorological trends variations on the exploitability of the kite towing concept, a time domain approach of the problem has been used. This tool is based on the weather database provided by the ECMWF. Two sailing strategies can be selected for assessing the performance of the kite system. For a given kite area, the simulation can be run either at constant speed or at constant engine power. A validation has been made, showing that predicted consumption is close from in-situ measurement. It shows an underestimation of 11.9% of the mean fuel consumption mainly due to auxiliary consumption and added resistance in waves that were not taken into account. To conclude, a case study is performed on a 2200 TEU container ship equipped with an 800m² kite on a transatlantic route between Halifax and Le Havre. Round trip simulations, performed over 5 years of navigation, show that the total economy predicted is of around 12% at a speed of 16 knots and around 6.5% at a speed of 19 knots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.