Abstract
Fuel-driven dissipative formation of disulfide bonds using competing oxidative activation and reductive deactivation presents a possibly very versatile avenue for autonomous materials design. However, this is challenging to realize because of the direct annihilation of oxidizing fuel and a deactivating reducing agent. We overcome this challenge by introducing a redox-based enzymatic reaction network (ERN), enabling the dissipative disulfide formation for molecularly dissolved thiols in a fully autonomous manner. Moreover, the ERN allows for programming hydrogel lifetimes by utilizing thiol-terminated star polymers (sPEG-SH). The ERN can be customized to operate with aliphatic and aromatic thiols and should thus be broadly applicable to functional thiols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.