Abstract

One objective of the FPT2 test of the PHEBUS FP Program was to study the degradation of an irradiated UO2 fuel bundle and the fission product behaviour under conditions of low steam flow. The results of the post-irradiation examinations (PIE) at the upper levels (823mm and 900mm) of the test section previously reported are interpreted in the present paper. Solid state interactions between fuel and cladding have been compared with the characteristics of interaction identified in the previous separate-effect tests. Corium resulting from the interaction between fuel and cladding was formed. The uranium concentration in the corium is compared to analytical tests and a scenario for the corium formation is proposed. The analysis showed that, despite the rather low fuel burn up, the conditions of temperature and oxygen potential reached during the starvation phase are able to give an early very significant release fraction of caesium. A significant part (but not all) of the molybdenum was segregated at grain boundaries and trapped in metallic inclusions from which they were totally removed in the final part of the experiment. During the steam starvation phase, the conditions of oxygen potential were favourable for the formation of simple Ba and BaO chemical forms but the temperature was too low to provoke their volatility. This is one important difference with out-of-pile experiments such as VERCORS for which only a combination of high temperature and low oxygen potential induced a significant barium release. Finally another significant difference with analytical out-of-pile experiments comes from the formation of foamy zones due to the fission gas presence in FPT2-type experiments which give an additional possibility for the formation of stable fission product compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.