Abstract
The fission product behavior during two postulated loss-of-flow accidents (leading to high- and low-pressure core degradations) in the Advanced Test Reactor (ATR) has been analyzed. These transients are designated ATR transients LCP 15 (high pressure) and LPP9 (low pressure). Normally, transients of this nature would be easily mitigated using existing safety systems and procedures. In these analyses, failure of these safety systems was assumed so that core degradation and fission product release could be studied. A probabilistic risk analysis was performed that indicated that the probability of occurrence for these two transients is on the order of 10[sup [minus]5] and 10[sup [minus]7] per reactor year for LCP15 and LPP9, respectively. The fission product behavior analysis included calculations of the gaseous and highly volatile fission product (xenon, krypton, cesium, iodine, and tellurium) inventories in the fuel before accident initiation, release of the fission products from the fuel into the reactor vessel during core melt, the probable chemical forms, and transport of the fission products from the core through the reactor vessel and existing piping to the confinement. In addition to a base-case analysis of fission product behavior, a series of analyses was performed to determine the sensitivity of fission product releasemore » to several parameters including steam flow rate, (structural) aluminum oxidation, and initial aerosol size. The base-case analyses indicate that the volatile fission products (excluding the noble gases) will be transported as condensed species on zinc aerosols.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.