Abstract

ABSTRACTFourier transform infrared (FTIR) transmission spectroscopy. was used to monitor the decomposition of H2O (D2O) and NH3(ND3) on silicon surfaces. Experiments were performed in-situ in an ultra-high vacuum (UHV) chamber using high surface area poroussilicon samples. The FTIR spectra revealed that H2O dissociates upon adsorption at 300K to form SiH and SiNH2 surface species. NH3 also issociates upon adsorption at 300 K to form SiH and SiOH2 species. Silicon samples with saturation exposures of H2O and NH3 were progressively annealed from 300 K to 860 K. The FTIR spectra of an H2O-saturated silicon surface revealed that the SiOH species decomposed to form a silicon oxide species and additional surface hydrogen between 460 K and 580 K. Likewise, the SiNH2 species decomposed between 540 K and 660 K to produce silicon nitride and additional surface hydrogen. In both cases, the Sill surface species decreased as H2 desorption from the silicon surface was observed above 700 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.