Abstract
We present how to construct elliptically fibered K3 surfaces via Weierstrass models which can be parametrized in terms of Wilson lines in the dual heterotic string theory. We work with a subset of reflexive polyhedras that admit two fibers whose moduli spaces contain the ones of the E_{8}times E_{8} or frac{Spin(32)}{{mathbb {Z}}_{2}} heterotic theory compactified on a two torus without Wilson lines. One can then interpret the additional moduli as a particular Wilson line content in the heterotic strings. A convenient way to find such polytopes is to use graphs of polytopes where links are related to inclusion relations of moduli spaces of different fibers. We are then able to map monomials in the defining equations of particular K3 surfaces to Wilson line moduli in the dual theories. Graphs were constructed developing three different programs which give the gauge group for a generic point in the moduli space, the Weierstrass model as well as basic enhancements of the gauge group obtained by sending coefficients of the hypersurface equation defining the K3 surface to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.